Logic Gates and Circuits

Question 1

The diagram below is for a NOT gate (or an Inverter). Complete the truth table for this gate.

Input	Output
\mathbf{A}	\mathbf{Q}

Question 2

The diagram below is for an AND gate. Complete the truth table for this gate

Inputs		Output
\mathbf{A}	B	\mathbf{Q}

Question 3

The diagram below is for an OR gate. Complete the truth table for this gate.

Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Q}

Logic Circuits - A Combination of Logic Gates

Question 4

Complete this table to show every possible combination of logic 2 inputs for A and B

A	B

Question 5

Complete this table to show every possible combination of logic 3 inputs A, B and C

\mathbf{A}	\mathbf{B}	\mathbf{C}

Question 6.

a) Complete the truth table for point P

Inputs		Outputs	
\mathbf{A}	\mathbf{B}	\mathbf{P}	\mathbf{Q}

Question 7

Complete the truth table for this circuit.

Inputs		Outputs	
A	B		

Question 8

The logic circuit below has 3 inputs and so there are 8 possible combinations of A, B and C .

Now work out every value of Q for the circuit

Inputs			Outputs	
A	B	C	A OR B	Q

Question 9

You can have more than two inputs to a logic gate.

Using the diagram above, complete the truth table below for the three input AND gate.

Inputs			Output
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Q}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

